
The Executable Jar Format

Back to index

• 1. Nested JARs

• 2. Spring Boot’s “NestedJarFile” Class

• 3. Launching Executable Jars

• 4. PropertiesLauncher Features

• 5. Executable Jar Restrictions

• 6. Alternative Single Jar Solutions

The spring-boot-loader modules lets Spring Boot support executable jar and war

files. If you use the Maven plugin or the Gradle plugin, executable jars are

automatically generated, and you generally do not need to know the details of

how they work.

If you need to create executable jars from a different build system or if you are

just curious about the underlying technology, this appendix provides some

background.

1. Nested JARs

Java does not provide any standard way to load nested jar files (that is, jar files

that are themselves contained within a jar). This can be problematic if you need

https://docs.spring.io/spring-boot/docs/current/reference/html/index.html
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.nested-jars
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.jarfile-class
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.launching
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.property-launcher
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.restrictions
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.alternatives

to distribute a self-contained application that can be run from the command

line without unpacking.

To solve this problem, many developers use “shaded” jars. A shaded jar

packages all classes, from all jars, into a single “uber jar”. The problem with

shaded jars is that it becomes hard to see which libraries are actually in your

application. It can also be problematic if the same filename is used (but with

different content) in multiple jars. Spring Boot takes a different approach and

lets you actually nest jars directly.

1.1. The Executable Jar File Structure

Spring Boot Loader-compatible jar files should be structured in the following

way:

example.jar

 |

 +-META-INF

 | +-MANIFEST.MF

 +-org

 | +-springframework

 | +-boot

 | +-loader

 | +-<spring boot loader classes>

 +-BOOT-INF

 +-classes

 | +-mycompany

 | +-project

 | +-YourClasses.class

 +-lib

 +-dependency1.jar

 +-dependency2.jar

Application classes should be placed in a nested BOOT-INF/classes directory.

Dependencies should be placed in a nested BOOT-INF/lib directory.

1.2. The Executable War File Structure

Spring Boot Loader-compatible war files should be structured in the following

way:

example.war

 |

 +-META-INF

 | +-MANIFEST.MF

 +-org

 | +-springframework

 | +-boot

 | +-loader

 | +-<spring boot loader classes>

 +-WEB-INF

 +-classes

 | +-com

 | +-mycompany

 | +-project

 | +-YourClasses.class

 +-lib

 | +-dependency1.jar

 | +-dependency2.jar

 +-lib-provided

 +-servlet-api.jar

 +-dependency3.jar

Dependencies should be placed in a nested WEB-INF/lib directory. Any

dependencies that are required when running embedded but are not required

when deploying to a traditional web container should be placed in WEB-

INF/lib-provided.

1.3. Index Files

Spring Boot Loader-compatible jar and war archives can include additional

index files under the BOOT-INF/ directory. A classpath.idx file can be provided

for both jars and wars, and it provides the ordering that jars should be added

to the classpath. The layers.idx file can be used only for jars, and it allows a jar

to be split into logical layers for Docker/OCI image creation.

Index files follow a YAML compatible syntax so that they can be easily parsed

by third-party tools. These files, however, are not parsed internally as YAML

and they must be written in exactly the formats described below in order to be

used.

1.4. Classpath Index

The classpath index file can be provided in BOOT-INF/classpath.idx. Typically, it

is generated automatically by Spring Boot’s Maven and Gradle build plugins. It

provides a list of jar names (including the directory) in the order that they

should be added to the classpath. When generated by the build plugins, this

classpath ordering matches that used by the build system for running and

testing the application. Each line must start with dash space ("-·") and names

must be in double quotes.

For example, given the following jar:

example.jar

 |

 +-META-INF

 | +-...

 +-BOOT-INF

 +-classes

 | +...

 +-lib

 +-dependency1.jar

 +-dependency2.jar

The index file would look like this:

- "BOOT-INF/lib/dependency2.jar"

- "BOOT-INF/lib/dependency1.jar"

1.5. Layer Index

The layers index file can be provided in BOOT-INF/layers.idx. It provides a list of

layers and the parts of the jar that should be contained within them. Layers are

written in the order that they should be added to the Docker/OCI image.

Layers names are written as quoted strings prefixed with dash space ("-·") and

with a colon (":") suffix. Layer content is either a file or directory name written

as a quoted string prefixed by space space dash space ("··-·"). A directory name

ends with /, a file name does not. When a directory name is used it means that

all files inside that directory are in the same layer.

A typical example of a layers index would be:

- "dependencies":

 - "BOOT-INF/lib/dependency1.jar"

 - "BOOT-INF/lib/dependency2.jar"

- "application":

 - "BOOT-INF/classes/"

 - "META-INF/"

2. Spring Boot’s “NestedJarFile”

Class

The core class used to support loading nested jars

is org.springframework.boot.loader.jar.NestedJarFile. It lets you load jar content

from nested child jar data. When first loaded, the location of each JarEntry is

mapped to a physical file offset of the outer jar, as shown in the following

example:

myapp.jar

+-------------------+-------------------------+

| /BOOT-INF/classes | /BOOT-INF/lib/mylib.jar |

|+-----------------+||+-----------+----------+|

|| A.class ||| B.class | C.class ||

|+-----------------+||+-----------+----------+|

+-------------------+-------------------------+

 ^ ^ ^

 0063 3452 3980

The preceding example shows how A.class can be found in /BOOT-

INF/classes in myapp.jar at position 0063. B.class from the nested jar can

actually be found in myapp.jar at position 3452, and C.class is at position 3980.

Armed with this information, we can load specific nested entries by seeking to

the appropriate part of the outer jar. We do not need to unpack the archive,

and we do not need to read all entry data into memory.

2.1. Compatibility With the Standard Java

“JarFile”

Spring Boot Loader strives to remain compatible with existing code and

libraries. org.springframework.boot.loader.jar.NestedJarFile extends

from java.util.jar.JarFile and should work as a drop-in replacement.

Nested JAR URLs of the form jar:nested:/path/myjar.jar/!BOOT-

INF/lib/mylib.jar!/B.class are supported and open a connection compatible

with java.net.JarURLConnection. These can be used with Java’s URLClassLoader.

3. Launching Executable Jars

The org.springframework.boot.loader.launch.Launcher class is a special bootstrap

class that is used as an executable jar’s main entry point. It is the actual Main-

Class in your jar file, and it is used to setup an appropriate ClassLoader and

ultimately call your main() method.

There are three launcher subclasses (JarLauncher, WarLauncher,

and PropertiesLauncher). Their purpose is to load resources (.class files and so

on) from nested jar files or war files in directories (as opposed to those

explicitly on the classpath). In the case of JarLauncher and WarLauncher, the

nested paths are fixed. JarLauncher looks in BOOT-INF/lib/,

and WarLauncher looks in WEB-INF/lib/ and WEB-INF/lib-provided/. You can

add extra jars in those locations if you want more.

The PropertiesLauncher looks in BOOT-INF/lib/ in your application archive by

default. You can add additional locations by setting an environment variable

called LOADER_PATH or loader.path in loader.properties (which is a comma-

separated list of directories, archives, or directories within archives).

3.1. Launcher Manifest

You need to specify an appropriate Launcher as the Main-Class attribute

of META-INF/MANIFEST.MF. The actual class that you want to launch (that is,

the class that contains a main method) should be specified in the Start-

Class attribute.

The following example shows a typical MANIFEST.MF for an executable jar file:

Main-Class: org.springframework.boot.loader.launch.JarLauncher

Start-Class: com.mycompany.project.MyApplication

For a war file, it would be as follows:

Main-Class: org.springframework.boot.loader.launch.WarLauncher

Start-Class: com.mycompany.project.MyApplication

You need not specify Class-Path entries in your manifest file.

The classpath is deduced from the nested jars.

4. PropertiesLauncher Features

PropertiesLauncher has a few special features that can be enabled with external

properties (System properties, environment variables, manifest entries,

or loader.properties). The following table describes these properties:

Key Purpose

loader.path Comma-separated Classpath, such

as lib,${HOME}/app/lib. Earlier entries take

precedence, like a regular -classpath on

the javac command line.

loader.home Used to resolve relative paths in loader.path. For

example, given loader.path=lib,

then ${loader.home}/lib is a classpath location

(along with all jar files in that directory). This

property is also used to locate

a loader.properties file, as in the following

example /opt/app It defaults to ${user.dir}.

loader.args Default arguments for the main method (space

separated).

loader.main Name of main class to launch (for

example, com.app.Application).

loader.config.name Name of properties file (for example, launcher).

It defaults to loader.

file://///opt/app

Key Purpose

loader.config.location Path to properties file (for

example, classpath:loader.properties). It defaults

to loader.properties.

loader.system Boolean flag to indicate that all properties

should be added to System properties. It defaults

to false.

When specified as environment variables or manifest entries, the following

names should be used:

Key Manifest entry Environment variable

loader.path Loader-Path LOADER_PATH

loader.home Loader-Home LOADER_HOME

loader.args Loader-Args LOADER_ARGS

loader.main Start-Class LOADER_MAIN

loader.config.location Loader-Config-Location LOADER_CONFIG_LOCATION

loader.system Loader-System LOADER_SYSTEM

Build plugins automatically move the Main-Class attribute

to Start-Class when the uber jar is built. If you use that,

specify the name of the class to launch by using the Main-

Class attribute and leaving out Start-Class.

The following rules apply to working with PropertiesLauncher:

• loader.properties is searched for in loader.home, then in the root of the

classpath, and then in classpath:/BOOT-INF/classes. The first location

where a file with that name exists is used.

• loader.home is the directory location of an additional properties file

(overriding the default) only when loader.config.location is not specified.

• loader.path can contain directories (which are scanned recursively for jar

and zip files), archive paths, a directory within an archive that is scanned

for jar files (for example, dependencies.jar!/lib), or wildcard patterns (for

the default JVM behavior). Archive paths can be relative

to loader.home or anywhere in the file system with a jar:file: prefix.

• loader.path (if empty) defaults to BOOT-INF/lib (meaning a local directory

or a nested one if running from an archive). Because of

this, PropertiesLauncher behaves the same as JarLauncher when no

additional configuration is provided.

• loader.path can not be used to configure the location

of loader.properties (the classpath used to search for the latter is the JVM

classpath when PropertiesLauncher is launched).

• Placeholder replacement is done from System and environment

variables plus the properties file itself on all values before use.

• The search order for properties (where it makes sense to look in more

than one place) is environment variables, system

properties, loader.properties, the exploded archive manifest, and the

archive manifest.

5. Executable Jar Restrictions

You need to consider the following restrictions when working with a Spring

Boot Loader packaged application:

• Zip entry compression: The ZipEntry for a nested jar must be saved by

using the ZipEntry.STORED method. This is required so that we can seek

directly to individual content within the nested jar. The content of the

nested jar file itself can still be compressed, as can any other entry in the

outer jar.

• System classLoader: Launched applications should

use Thread.getContextClassLoader() when loading classes (most libraries

and frameworks do so by default). Trying to load nested jar classes

with ClassLoader.getSystemClassLoader() fails. java.util.Logging always uses

the system classloader. For this reason, you should consider a different

logging implementation.

6. Alternative Single Jar Solutions

If the preceding restrictions mean that you cannot use Spring Boot Loader,

consider the following alternatives:

• Maven Shade Plugin

• JarClassLoader

• OneJar

• Gradle Shadow Plugin

